Chapter 7 – The RSA Cryptosystem
ver. December 7, 2010

These slides were prepared by Benedikt Driessen, Christof Paar and Jan Pelzl
Some legal stuff (sorry): Terms of use

- The slides can be used free of charge. All copyrights for the slides remain with Christof Paar and Jan Pelzl.
- The title of the accompanying book “Understanding Cryptography” by Springer and the author’s names must remain on each slide.
- If the slides are modified, appropriate credits to the book authors and the book title must remain within the slides.
- It is not permitted to reproduce parts or all of the slides in printed form whatsoever without written consent by the authors.
Content of this Chapter

- The RSA Cryptosystem
- Implementation aspects
- Finding Large Primes
- Attacks and Countermeasures
- Lessons Learned
Content of this Chapter

• The RSA Cryptosystem
• Implementation aspects
• Finding Large Primes
• Attacks and Countermeasures
• Lessons Learned
The RSA Cryptosystem

- Martin Hellman and Whitfield Diffie published their landmark public-key paper in 1976
- Ronald Rivest, Adi Shamir and Leonard Adleman proposed the asymmetric RSA cryptosystem in 1977
- Until now, RSA is the most widely use asymmetric cryptosystem although elliptic curve cryptography (ECC) becomes increasingly popular
- RSA is mainly used for two applications
 - Transport of (i.e., symmetric) keys (cf. Chptr 13 of *Understanding Cryptography*)
 - Digital signatures (cf. Chptr 10 of *Understanding Cryptography*)
Encryption and Decryption

• RSA operations are done over the integer ring \mathbb{Z}_n (i.e., arithmetic modulo n), where $n = p \times q$, with p, q being large primes

• Encryption and decryption are simply exponentiations in the ring

Definition

Given the public key $(n, e) = k_{pub}$ and the private key $d = k_{pr}$ we write

$$y = e_{k_{pub}}(x) \equiv x^e \mod n$$

$$x = d_{k_{pr}}(y) \equiv y^d \mod n$$

where x, $y \in \mathbb{Z}_n$.

We call $e_{k_{pub}}()$ the encryption and $d_{k_{pr}}()$ the decryption operation.

• In practice x, y, n and d are very long integer numbers (≥ 1024 bits)

• The security of the scheme relies on the fact that it is hard to derive the „private exponent“ d given the public-key (n, e)
Key Generation

- Like all asymmetric schemes, RSA has set-up phase during which the private and public keys are computed.

Algorithm: RSA Key Generation

Output: public key: $k_{pub} = (n, e)$ and private key $k_{pr} = d$

1. Choose two large primes p, q
2. Compute $n = p \times q$
3. Compute $\Phi(n) = (p-1) \times (q-1)$
4. Select the public exponent $e \in \{1, 2, \ldots, \Phi(n)-1\}$ such that $\gcd(e, \Phi(n)) = 1$
5. Compute the private key d such that $d \times e \equiv 1 \mod \Phi(n)$
6. RETURN $k_{pub} = (n, e)$, $k_{pr} = d$

Remarks:

- Choosing two large, distinct primes p, q (in Step 1) is non-trivial
- $\gcd(e, \Phi(n)) = 1$ ensures that e has an inverse and, thus, that there is always a private key d
Example: RSA with small numbers

<table>
<thead>
<tr>
<th>ALICE</th>
<th>BOB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message $x = 4$</td>
<td>1. Choose $p = 3$ and $q = 11$</td>
</tr>
<tr>
<td></td>
<td>2. Compute $n = p \times q = 33$</td>
</tr>
<tr>
<td></td>
<td>3. $\Phi(n) = (3-1) \times (11-1) = 20$</td>
</tr>
<tr>
<td></td>
<td>4. Choose $e = 3$</td>
</tr>
<tr>
<td>$K_{pub} = (33, 3)$</td>
<td>5. $d \equiv e^{-1} \equiv 7 \mod 20$</td>
</tr>
</tbody>
</table>

$y = x^e \equiv 4^3 \equiv 31 \mod 33$

$y = 31$

$y^d = 31^7 \equiv 4 = x \mod 33$
Content of this Chapter

- The RSA Cryptosystem
- Implementation aspects
- Finding Large Primes
- Attacks and Countermeasures
- Lessons Learned
Implementation aspects

• The RSA cryptosystem uses only one arithmetic operation (modular exponentiation) which makes it conceptually a simple asymmetric scheme

• Even though conceptually simple, due to the use of very long numbers, RSA is orders of magnitude slower than symmetric schemes, e.g., DES, AES

• When implementing RSA (esp. on a constrained device such as smartcards or cell phones) close attention has to be paid to the correct choice of arithmetic algorithms

• The square-and-multiply algorithm allows fast exponentiation, even with very long numbers…
Square-and-Multiply

- **Basic principle**: Scan exponent bits from left to right and square/multiply operand accordingly

 Algorithm: Square-and-Multiply for $x^H \mod n$

 Input: Exponent H, base element x, Modulus n
 Output: $y = x^H \mod n$

 1. Determine binary representation $H = (h_t, h_{t-1}, ..., h_0)_2$
 2. FOR $i = t-1$ TO 0
 3. $y = y^2 \mod n$
 4. IF $h_i = 1$ THEN
 5. $y = y \cdot x \mod n$
 6. RETURN y

- Rule: Square in every iteration (Step 3) and multiply current result by x if the exponent bit $h_i = 1$ (Step 5)
- Modulo reduction after each step keeps the operand y small
Example: Square-and-Multiply

- Computes x^{26} without modulo reduction

- Binary representation of exponent: $26 = (1, 1, 0, 1, 0)_2 = (h_4, h_3, h_2, h_1, h_0)_2$

<table>
<thead>
<tr>
<th>Step</th>
<th>Binary exponent</th>
<th>Op</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$x = x^1$</td>
<td></td>
<td>Initial setting, h_4 processed</td>
</tr>
<tr>
<td>1a</td>
<td>$(x^1)^2 = x^2$</td>
<td>SQ</td>
<td>Processing h_3</td>
</tr>
<tr>
<td>1b</td>
<td>$x^2 \cdot x = x^3$</td>
<td>MUL</td>
<td>$h_3 = 1$</td>
</tr>
<tr>
<td>2a</td>
<td>$(x^3)^2 = x^6$</td>
<td>SQ</td>
<td>Processing h_2</td>
</tr>
<tr>
<td>2b</td>
<td>-</td>
<td></td>
<td>$h_0 = 0$</td>
</tr>
<tr>
<td>3a</td>
<td>$(x^6)^2 = x^{12}$</td>
<td>SQ</td>
<td>Processing h_1</td>
</tr>
<tr>
<td>3b</td>
<td>$x^{12} \cdot x = x^{13}$</td>
<td>MUL</td>
<td>$h_1 = 1$</td>
</tr>
<tr>
<td>4a</td>
<td>$(x^{13})^2 = x^{26}$</td>
<td>SQ</td>
<td>Processing h_0</td>
</tr>
<tr>
<td>4b</td>
<td>-</td>
<td></td>
<td>$h_0 = 0$</td>
</tr>
</tbody>
</table>

- Observe how the exponent evolves into $x^{26} = x^{11010}$
Complexity of Square-and-Multiply Alg.

- The square-and-multiply algorithm has a logarithmic complexity, i.e., its run time is proportional to the bit length (rather than the absolute value) of the exponent.

- Given an exponent with $t+1$ bits

 \[H = (h_t, h_{t-1}, \ldots, h_0)_2 \]

 with $h_t = 1$, we need the following operations:

 - # Squarings = t
 - Average # multiplications = $0.5 \times t$
 - Total complexity: $\#SQ + \#MUL = 1.5 \times t$

- Exponents are often randomly chosen, so $1.5 \times t$ is a good estimate for the average number of operations.

- Note that each squaring and each multiplication is an operation with very long numbers, e.g., 2048 bit integers.
Speed-Up Techniques

- Modular exponentiation is computationally intensive
- Even with the square-and-multiply algorithm, RSA can be quite slow on constrained devices such as smart cards
- Some important tricks:
 - Short public exponent e
 - Chinese Remainder Theorem (CRT)
 - Exponentiation with pre-computation *(not covered here)*
Fast encryption with small public exponent

- Choosing a small public exponent e does not weaken the security of RSA
- A small public exponent improves the speed of the RSA encryption significantly

<table>
<thead>
<tr>
<th>Public Key</th>
<th>e as binary string</th>
<th>#MUL + #SQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^1 + 1 = 3$</td>
<td>(11)$_2$</td>
<td>$1 + 1 = 2$</td>
</tr>
<tr>
<td>$2^4 + 1 = 17$</td>
<td>(1 0001)$_2$</td>
<td>$4 + 1 = 5$</td>
</tr>
<tr>
<td>$2^{16} + 1$</td>
<td>(1 0000 0000 0000 0001)$_2$</td>
<td>$16 + 1 = 17$</td>
</tr>
</tbody>
</table>

- This is a commonly used trick (e.g., SSL/TLS, etc.) and makes RSA the fastest asymmetric scheme with regard to encryption!
Fast decryption with CRT

- Choosing a small private key d results in security weaknesses!
 - In fact, d must have at least $0.3t$ bits, where t is the bit length of the modulus n
- However, the Chinese Remainder Theorem (CRT) can be used to (somewhat) accelerate exponentiation with the private key d
- Based on the CRT we can replace the computation of
 $$x^d \mod \phi(n) \mod n$$

 by two computations
 $$x^{d \mod (p-1)} \mod p \quad \text{and} \quad x^{d \mod (q-1)} \mod q$$

 where q and p are „small“ compared to n
Basic principle of CRT-based exponentiation

- CRT involves three distinct steps
 1. Transformation of operand into the CRT domain
 2. Modular exponentiation in the CRT domain
 3. Inverse transformation into the problem domain

- These steps are equivalent to one modular exponentiation in the problem domain

Problem Domain

\[x \]

CRT Domain

\[x_p \]
\[x_q \]

\[x^d \mod n \]

\[x_p^{d \mod (p-1)} \mod p \]
\[x_q^{d \mod (q-1)} \mod q \]
CRT: Step 1 – Transformation

- Transformation into the CRT domain requires the knowledge of p and q
- p and q are only known to the owner of the private key, hence CRT cannot be applied to speed up encryption
- The transformation computes (x_p, x_q) which is the representation of x in the CRT domain. They can be found easily by computing

 $x_p \equiv x \mod p$ and $x_q \equiv x \mod q$
CRT: Step 2 – Exponentiation

- Given d_p and d_q such that
 \[d_p \equiv d \mod (p-1) \quad \text{and} \quad d_q \equiv d \mod (q-1) \]
 one exponentiation in the problem domain requires two exponentiations in the CRT domain
 \[y_p \equiv x_p^{dp} \mod p \quad \text{and} \quad y_q \equiv x_q^{dq} \mod q \]
- In practice, p and q are chosen to have half the bit length of n, i.e.,
 \[|p| \approx |q| \approx |n|/2 \]
CRT: Step 3 – Inverse Transformation

- Inverse transformation requires modular inversion twice, which is computationally expensive
 \[c_p \equiv q^{-1} \mod p \quad \text{and} \quad c_q \equiv p^{-1} \mod q \]

- Inverse transformation assembles \(y_p, y_q \) to the final result \(y \mod n \) in the problem domain
 \[y \equiv [q \cdot c_p] \cdot y_p + [p \cdot c_q] \cdot y_q \mod n \]

- The primes \(p \) and \(q \) typically change infrequently, therefore the cost of inversion can be neglected because the two expressions \([q \cdot c_p]\) and \([p \cdot c_q]\) can be precomputed and stored
Complexity of CRT

- We ignore the transformation and inverse transformation steps since their costs can be neglected under reasonable assumptions.
- Assuming that n has $t+1$ bits, both p and q are about $t/2$ bits long.
- The complexity is determined by the two exponentiations in the CRT domain. The operands are only $t/2$ bits long. For the exponentiations we use the square-and-multiply algorithm:
 - # squarings (one exp.): $\#SQ = 0.5 \ t$
 - # aver. multiplications (one exp.): $\#MUL = 0.25t$
 - Total complexity: $2 \times (\#MUL + \#SQ) = 1.5t$
- This looks the same as regular exponentiations, but since the operands have half the bit length compared to regular exponent., each operation (i.e., multipl. and squaring) is 4 times faster!
- Hence CRT is 4 times faster than straightforward exponentiation.
Content of this Chapter

- The RSA Cryptosystem
- Implementation aspects
- Finding Large Primes
- Attacks and Countermeasures
- Lessons Learned
Finding Large Primes

- Generating keys for RSA requires finding two large primes p and q such that $n = p \times q$ is sufficiently large.
- The size of p and q is typically half the size of the desired size of n.
- To find primes, random integers are generated and tested for primality:

 - **RNG** → **Primality Test** → "p' is prime" or "p' is composite"

- The random number generator (RNG) should be non-predictable otherwise an attacker could guess the factorization of n.
Primality Tests

- Factoring \(p \) and \(q \) to test for primality is typically not feasible
- However, we are not interested in the factorization, we only want to know whether \(p \) and \(q \) are composite
- Typical primality tests are probabilistic, i.e., they are not 100% accurate but their output is correct with very high probability
- A probabilistic test has two outputs:
 - „\(p \) is composite“ – always true
 - „\(p \) is a prime“ – only true with a certain probability
- Among the well-known primality tests are the following
 - Fermat Primality-Test
 - Miller-Rabin Primality-Test
Fermat Primality-Test

- Basic idea: Fermat’s Little Theorem holds for all primes, i.e., if a number \(p' \) is found for which \(a^{p'-1} \equiv 1 \mod p' \), it is not a prime.

Algorithm: Fermat Primality-Test

Input: Prime candidate \(p' \), security parameter \(s \)

Output: „\(p' \) is composite“ or „\(p' \) is likely a prime“

1. **FOR** \(i = 1 \) **TO** \(s \)
2. choose random \(a \in \{2, 3, ..., p'-2\} \)
3. **IF** \(a^{p'-1} \not\equiv 1 \mod p' \) **THEN**
4. **RETURN** „\(p' \) is composite“
5. **RETURN** „\(p' \) is likely a prime“

- For certain numbers („Carchimchael numbers“) this test returns „\(p' \) is likely a prime“ often – although these numbers are composite.
- Therefore, the Miller-Rabin Test is preferred.
Theorem for Miller-Rabin’s test

- The more powerful Miller-Rabin Test is based on the following theorem

Theorem
Given the decomposition of an odd prime candidate p'

\[p' - 1 = 2^u r \]

where r is odd. If we can find an integer a such that

\[a^r \not\equiv 1 \mod p' \quad \text{and} \quad a^{2^j} \not\equiv p' - 1 \mod p' \]

For all $j = \{0, 1, ..., u-1\}$, then p' is composite.
Otherwise it is probably a prime.

- This theorem can be turned into an algorithm
Algorithm: Miller-Rabin Primality-Test

Input: Prime candidate \(p' \) with \(p'-1 = 2^u \cdot r \) security parameter \(s \)

Output: „\(p' \) is composite“ or „\(p' \) is likely a prime“

1. FOR \(i = 1 \) TO \(s \)
2. choose random \(a \in \{2, 3, ..., p'-2\} \)
3. \(z \equiv a^r \mod p' \)
4. IF \(z \neq 1 \) AND \(z \neq p'-1 \) THEN
5. FOR \(j = 1 \) TO \(u-1 \)
6. \(z \equiv z^2 \mod p' \)
7. IF \(z = 1 \) THEN
8. RETURN „\(p' \) is composite“
9. IF \(z \neq p'-1 \) THEN
10. RETURN „\(p' \) is composite“
11. RETURN „\(p' \) is likely a prime“
Content of this Chapter

- The RSA Cryptosystem
- Implementation aspects
- Finding Large Primes
- Attacks and Countermeasures
- Lessons Learned
Attacks and Countermeasures 1/3

- There are two distinct types of attacks on cryptosystems
 - **Analytical attacks** try to break the mathematical structure of the underlying problem of RSA
 - **Implementation attacks** try to attack a real-world implementation by exploiting inherent weaknesses in the way RSA is realized in software or hardware
Attacks and Countermeasures 2/3

RSA is typically exposed to these analytical attack vectors

- **Mathematical attacks**
 - The best known attack is factoring of n in order to obtain $\Phi(n)$
 - Can be prevented using a sufficiently large modulus n
 - The current factoring record is 664 bits. Thus, it is recommended that n should have a bit length between 1024 and 3072 bits

- **Protocol attacks**
 - Exploit the malleability of RSA, i.e., the property that a ciphertext can be transformed into another ciphertext which decrypts to a related plaintext – without knowing the private key
 - Can be prevented by proper padding
Attacks and Countermeasures 3/3

- Implementation attacks can be one of the following
 - **Side-channel analysis**
 - Exploit physical leakage of RSA implementation (e.g., power consumption, EM emanation, etc.)
 - **Fault-injection attacks**
 - Inducing faults in the device while CRT is executed can lead to a complete leakage of the private key

More on all attacks can be found in Section 7.8 of *Understanding Cryptography*
Attacks and Countermeasures 2/2

- RSA is typically exposed to these analytical attack vectors *(cont’d)*
 - **Protocol attacks**
 - Exploit the malleability of RSA
 - Can be prevented by proper padding
 - Implementation attacks can be one of the following
 - **Side-channel analysis**
 - Exploit physical leakage of RSA implementation (e.g., power consumption, EM emanation, etc.)
 - **Fault-injection attacks**
 - Inducing faults in the device while CRT is executed can lead to a complete leakage of the private key
Content of this Chapter

- The RSA Cryptosystem
- Implementation aspects
- Finding Large Primes
- Attacks and Countermeasures
- Lessons Learned
Lessons Learned

- RSA is the most widely used public-key cryptosystem
- RSA is mainly used for key transport and digital signatures
- The public key e can be a short integer, the private key d needs to have the full length of the modulus n
- RSA relies on the fact that it is hard to factorize n
- Currently 1024-bit cannot be factored, but progress in factorization could bring this into reach within 10-15 years. Hence, RSA with a 2048 or 3076 bit modulus should be used for long-term security
- A naïve implementation of RSA allows several attacks, and in practice RSA should be used together with padding